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Detection & Attribution

Detection
Demonstrating that climate or a system affected by climate has changed in
some defined statistical sense 1 without providing a reason for that change.

IPCC Good Practice Guidance Paper on Detection and Attribution, 2010

1. statistically usually, significant beyond what can be explained by internal (natural)
variability alone



Examples of a “Detection” statement

“Warming of the climate system is unequivocal, and since the
1950s, many of the observed changes are unprecedented over
decades to millennia. The atmosphere and ocean have warmed, the
amounts of snow and ice have diminished, sea level has risen, and
the concentrations of greenhouse gases have increased.”

IPCC-WG1-AR5 SPM

  

Fig. 2. Global (land and ocean) 
surface temperature anomaly 
time series with new analysis, 
old analysis, and with and 
without time-dependent bias 
corrections. (A) The new 
analysis (solid black) compared 
to the old analysis (red). (B) The 
new analysis (solid black) versus 
no corrections for time-
dependent biases (cyan). 
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Detection & Attribution

Attribution
Evaluating the relative contributions of multiple causal factors 2 to a change or
event with an assignment of statistical confidence.

Consequences
Need to assess wether the observed changes are

consistent with the expected responses to external forcings

inconsistent with alternative explanations

2. casual factors usually refer to external influences, which may be anthropogenic (GHGs, aero-
sols, ozone precursors, land use) and/or natural (volcanic eruptions, solar cycle modulations



Detection & Attribution

Attribution
Evaluating the relative contributions of multiple causal factors 2 to a change or
event with an assignment of statistical confidence.

Consequences
Need to assess wether the observed changes are

consistent with the expected responses to external forcings

inconsistent with alternative explanations

2. casual factors usually refer to external influences, which may be anthropogenic (GHGs, aero-
sols, ozone precursors, land use) and/or natural (volcanic eruptions, solar cycle modulations



Tambora 1815 (illustrations by G. & W.R. Harlin)

⇒ Plutarch noticed that the eruption of Etna in 44 B.C. attenuated the sunlight and caused crops to shrivel up in ancient Rome.

⇒ Benjamin Franklin suggested that the Laki eruption in Iceland in 1783 was related to the abnormally cold winter of 1783-1784.



Antropogenic forcings

Turner, The Fighting Temeraire - tugged to her Last Berth to be broken up :
1838-39



What do you need in D&A ?

Observations of climate indicators
Inhomogeneity in space and time (& reconstructions via proxies)

An estimate of external forcing
How external drivers of climate change have evolved before and during the
period under investigation – e.g., GHG and solar radiation

A quantitative physically-based understanding
How external forcing might affect these climate indicators. – normally
encapsulated in a physically-based model

An estimate of climate internal variability Σ

Frequently derived from a physically-based model



Classical assumptions

Key forcings have been identified

Signals are additive

Noise is additive

The large-scale patterns of response are correctly simulated by climate
models

Statistical inference schemes are efficient



Examples of a “Attribution” statement (e.g., see F. Zwiers’ work)

Attribution results 



Two classical statistical approaches in D&A

1- Linear regression techniques



One huge problem (from a stat and a decision making perspectives)

There is only one Earth !
One unique observation, ie. a very long vector (space ∗ time)

Methods based on learning from a large training set can’t be easily applied
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One key idea : use climate models to generate Earth’s avatars
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SummaryEvent attribution - methodological proposal

! Step 2 & 3: causal graph + monotonicity and exogeneity.
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Event attribution - methodological proposal

! Step 2 & 3: causal graph.

counterfactual run
w.r.t. 

anthropogenic forcing:
«!NAT!»



The basic regression scheme
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Gabi Hegerl’s presentation at Geneva IPCC WG1/WG2 Meeting in Sept 2009



Ongoing research on regression schemes

Issues

Estimation the internal variability (huge non-sparse covariance matrices)

Dealing with climate model errors and GCM discrepancies

Dealing with observational and forcing errors

Dealing with extreme events

Possible solutions

Regularising covariance matrices

Error-in-variable errors

Taking advantage of multivariate extreme value theory (see Anthony’s
talk)
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Two classical statistical approaches in D&A

1- Linear regression techniques

2- FAR (Fraction of Attributable Risk)
The FAR = the relative ratio of two probabilities, p0 the probability of
exceeding a threshold in a “world that might have been (no antropogenic
forcings)” and p1 the probability of exceeding the same threshold in a “world
that it is”

FAR =
p1 − p0

p1
.

Example of an specific event, the 2003 summer heat wave over Europe (see
Stott P. A., Stone D. A., Allen M. R. (2004). Human contribution to the
European heatwave of 2003. Nature)



The cornerstone of causality: counterfactual definition

! D. Hume, An Enquiry Concerning Human
Understanding,1748
« We may define a cause to be an object
followed by another, where, if the first object
had not been, the second never had existed.!»

! D. K. Lewis, Counterfactuals, 1973
«!We think of a cause as something that makes
a difference, and the difference it makes must
be a difference from what would have
happened without it. Had it been absent, its
effects would have been absent as well.!»

D. Hume, 18th century

D. Lewis, 20th century

Coming slides : Hannart, A., Pearl J. Otto F., P. Naveau and M. Ghil. (BAMS, 2015). Counterfactual causality theory for the attribution of

weather and climate-related events



Consolidation of a standard causality theory (1980-1990)

! Common theoretical corpus on
causality

— what does «X causes Y» mean ?

— how does one evidence a causality
link from data ?

— philosophy, artificial intelligence,
statistics.

— statistics alone not enough - more
concepts needed.

! J. Pearl (2000), Causality: models,
reasoning and inference,
Cambridge University Press.

! Turing Award 2004.

!   Provides clear semantics and sound logic for causal reasoning.





Oriented graphsOverview of the theory - oriented graphs

! Oriented graphs:
— visual representation of the conditional independence structure of a joint

distribution



Interventional probability

Overview of the theory - interventional probability

! Limitation of oriented graphs
— identifiability: several causal graphs are compatible with the same pdf

(and hence with the same observations).

— Need for disambiguation.

experimentation



Interventional probability

Overview of the theory - interventional probability

! New notion:
— intervention do(X=x)

— interventional probability P(Y l do(X=x)) = P(Yx)

the probability of rain knowing that the barometer is decreasing,
 in a non-experimental context in which the barometer evolution is left unconstrained

the probability of rain forcing the barometer to decrease,
in an experimental context in which the barometer is manipulated



Fundamental difference : necessary and sufficient causation

Overview of the theory - necessary and sufficient causation

! Definitions:

— “X is a necessary cause of Y” means that X is required for Y to occur but
that other factors might be required as well.

— “X is a sufficient cause of Y” means that X always triggers Y but that Y
may also occur for other reasons without requiring X.

! Examples:
— clouds are a necessary cause of rain but not a sufficient one.
— rain is a sufficient cause for the road being wet, but not a necessary one.



Fundamental difference : necessary and sufficient causation

Overview of the theory - necessary and sufficient causation

! Definitions:

— Probability of necessary causality = PN = the probability that the event
Y would not have occurred in the absence of the event X given that both
events Y and X did in fact occur.

— Probability of sufficient causation = PS = the probability that Y would
have occurred in the presence of X, given that Y and X did not occur.

! Formalization:



Necessary and sufficient causation
Overview of the theory - necessary and sufficient causation

! How to calculate PN, PS and PNS ?
— difficult in general
— closed formula under assumption of monotonicity
— simplifies further under monotonicity and exogeneity:

FAR, «!excess risk ratio!»

Recall : The FAR = the relative ratio of two probabilities, p0 the probability of exceeding a threshold in a “world that might have been (no
antropogenic forcings)” and p1 the probability of exceeding the same threshold in a “world that it is”

FAR =
p1 − p0

p1



Event attribution - methodological proposal

! Step 2 & 3: causal graph.

factual run:
«!HIST!»



Revisiting the 2003 European heatwave with counterfactual theory

EVT extrapolation (GEV) based on HIST and NAT ensembles (Hadley
center model)

Event attribution - illustration on 2003 European heatwave

! Step 2: EVT extrapolation (GEV) based on HIST and NAT ensembles
(Hadley center model) => two distributions of Z.

p0 = 0.0008 (1/1250), p1 = 0.008 (1/125)



Event attribution - illustration on 2003 European heatwave

! Step 3:

p0 = 0.0008 (1/1250), p1 = 0.008 (1/125)

PN = 0.9, PS = 0.0072, PNS = 0.0072

« CO2 emissions are very likely to be a necessary cause, but are 
virtually certainly not a sufficient cause, of the 2003 heatwave. »

This highlights a distinctive feature of unusual events: several necessary causes 
may often be evidenced but rarely a sufficient one



Event attribution - necessary and sufficient causation

! Which matters for event attribution: PN, PS or PNS ?

! The  ex post perspective (judge) :
— «who is to blame for the weather event that occurred ?»

— insurance, compensation, loss and damage mechanisms (e.g. Warsaw
2013)

— PN matters, not PS.

! The ex ante perspective (policy maker)
— «what should be done today w.r.t. events that may occur in the future?»

— PS matters for assessing the cost of inaction, PN for assessing the
benefit of action.

! The dissemination perspective (media, IPCC)
— PNS is a trade off between PN and PS.

— good candidate for a single metric as it avoids explaining the distinction.

PN, PS and PNS all matter



Fraction of Attributable Risk (FAR)

A relative ratio based on two probabilities

PN = FAR =
p1 − p0

p1
.

where p0 the probability of exceeding a threshold in a “world that might have
been (no antropogenic forcings)” and p1 the probability of exceeding the
same threshold in a “world that it is”



How to define an event ?



How to define an event ? UK school, FAR(u) = 1 − P(X > u)/P(Z > u)

Numerical models

X= “World that 
might have been”
with G(x)=P(X<x)

Z= “World as it is” 
with H(z)=P(Z<z)

Real world

Y= Measurements
F(y)=P(Y<y)

p0=P(X>u)

p1=P(Z>u)

u threshold from Y

FAR



FAR and Extreme Value Theory
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Inference of FAR(u) = 1 − P(X > u)/P(Z > u)

Empirical approach with a lot of numerical runs
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How to define an event ?

far(r) = 1 − P(X (r) > max(X (1), . . . ,X (r−1)))

P(Z (r) > max(X (1), . . . ,X (r−1)))
,

where r represents a return period in years.



Alternative FAR : far(r) = 1 − 1
rP(Z (r)>max(X (1),...,X (r−1)))
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FAR, far and Extreme Value Theory
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Conclusions

Summary

Causality

Uncertainties (natural variability, model errors, large dimension, etc)

Defining extreme events, FAR and Extreme Value Theory

Future work

How to reduce unclear statements about “events” ? about causality ?

How to link numerical models and observations ?

How to infer a ratio of two small probabilities (zero divided by zero) ?

How to deal with the non-stationarity ?

Coming events (see blog “Beyond the hill”)

EVA (Extreme Value Analysis), Michigan, June 15-19, 2015

Statistical and mathematical tools for the study of climate extremes, Nov
9-13 2015, Cargese, Corsica

Summer School on Extreme value modeling and water resources,Lyon
June 13-24 2016.



A few articles

Coming up special issue on D&A in “Weather and Climate Extremes”

Hannart, A., et al. 2015 : Causal counterfactual theory for the attribution of weather and climate-related events. Bull. Amer. Meteor.
Soc. In press.

Hannart A. and P. Naveau. Estimating high dimensional covariance matrices : a new look at the Gaussian conjugate framework
(Journal of Multivariate Analysis, 2015).

Hannart, A., A. Ribes, and P. Naveau (2014), Optimal fingerprinting under multiple sources of uncertainty, Geophys. Res. Lett..

Naveau, P., Guillou, A. and Rietsch, T. (2014), A non-parametric entropy-based approach to detect changes in climate extremes.
Journal of the Royal Statistical Society : Series B (Statistical Methodology).

From the Far side (G. Larson)



Big data : statistical versus numerical models
Data Assimilation for Detection and Attribution
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Spatial and temporal scales in weather and climate



Interventional probability

Overview of the theory - interventional probability

! Property:
— Exogeneity: X exogenous if X has no parents
— in this case:

! Property:
— Monotonicity: Y is monotonic wrt X iif Yx(!) is a monotonic function of x

for any realization ! of the world.

=



Necessary and sufficient causation
Overview of the theory - necessary and sufficient causation

! How to calculate PN, PS and PNS ?
— difficult in general.
— closed formula under the assumption of monotonicity:

where:
p1 = P( Y=1 l X = 1 ) : factual probability of the event
p0 = P( Y=1 l X = 0 ) : counterfactual probability of the event



Necessary and sufficient causation

Overview of the theory - necessary and sufficient causation

! The judge perspective:
— defendant A shot a gun at random in a seemingly desert place.
— B stood one kilometer away and was unluckily hit right in between the

eyes.
— PN ~ 1, PS ~ 0.
— but A is an obvious culprit for the death of B from a legal perspective.
— only PN matters here, PS does not.

! The policy-maker perspective:
— what is the best policy to achieve a given objective ? (say, reducing

accidental gunshot mortality)
! prohibiting guns sales => PN = .., PS  ~ 1
! restricting guns sales => PN = .., PS = …
! better informing gun owners on safety => PN = .., PS = …

— both PN and PS matter to assess efficiency.



Event attribution - illustration on 2003 European heatwave

! Stott et al. 2004:

« It is very likely (>90%) that CO2 emissions have increased the 
frequency of occurrence of 2003-like heatwaves by a factor at least two »

FAR distribution

« CO2 emissions are very likely to be a 
necessary cause of the 2003 heatwave. »

=



Event attribution - summary

! «!Have CO2 emissions caused the 2003 European heatwave?!»

! The answer is greatly affected by:

— how one defines the event «!2003 European heatwave!»,

— what is the temporal focus of the question,

— whether causality is understood in a necessary or sufficient sense.

Precise causal answers about climate events 
critically require precise causal questions.



Summary for Policymakers

4

Figure SPM.1 |  (a) Observed global mean combined land and ocean surface temperature anomalies, from 1850 to 2012 from three data sets. Top panel: 
annual mean values. Bottom panel: decadal mean values including the estimate of uncertainty for one dataset (black). Anomalies are relative to the mean 
of 1961−1990. (b) Map of the observed surface temperature change from 1901 to 2012 derived from temperature trends determined by linear regression 
from one dataset (orange line in panel a). Trends have been calculated where data availability permits a robust estimate (i.e., only for grid boxes with 
greater than 70% complete records and more than 20% data availability in the first and last 10% of the time period). Other areas are white. Grid boxes 
where the trend is significant at the 10% level are indicated by a + sign. For a listing of the datasets and further technical details see the Technical Summary 
Supplementary Material. {Figures 2.19–2.21; Figure TS.2}
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