

Characterising the atmospheric boundary layer over cities in Europe and Asia base ceilometer observations

Simone <u>Kotthaus^{1,2}</u>, Sue Grimmond¹, Martial Haeffelin², Christoph Kent¹, and Olalekan Popoola³

¹Department of Meteorology, University of Reading, UK ²Institute Pierre Simon Laplace, Ecole Polytechnique, France ³Department of Chemistry, University of Cambridge, UK

NERCE SCIENCE OF THE ENVIRONMENT

NERC Airpro, ICOS, E-PROFILE, ACTRIS, URBANFLUXES, University of Reading, EU-COST

Copyright University of Reading

Mixing & aerosol

MLH Mixed layer height **RES** Residual layer

Observations

• Automatic Lidars and Ceilometers (ALC): Vaicala CL31

Impact of clouds on MLH?

→ Cloud Base Height (CBH)
→ Cloud cover

- Clouds have significant effect on ABL
- Cities known to affect cloud cover
- \rightarrow Theeuwes presentation 4A.6 Tue
- Often no SYNOP in cities

11:30

Kotthaus and Grimmond, 2018b, QJRMS

London

2000

DJFJJAMAMSON

Kotthaus and Grimmond, 2018b, QJRMS

Paris

DJFJJAMAMSON

7

Kotthaus and Grimmond, 2018b, QJRMS

2000

MLH comparison - ALL

Kotthaus and Grimmond, 2018b, QJRMS

Kotthaus et al., in prep

MLH comparison - Clear

Kotthaus and Grimmond, 2018b, QJRMS

Kotthaus et al., in prep

ABL classification scheme

Kotthaus and Grimmond, 2018b, QJRMS

Kotthaus et al., in prep

Applicable to Paris?

MLH minimum

Morning growth rate

Suburban Paris vs central Londor Reading

- Land cover (local)
- Land cover (upwind)
- Topography
- Synoptic background

Central London

0 10 20 30 40 km LUT STN

SIRTA: Haeffelin et al., 2005, AG

Suburban vs central Paris

Beijing: IAP site

MLH by synoptic class • Beijing MLH Nov 2016 – June

- 2017
- Stratified by synoptic class
- Sorted by local PM2.5 observed at IAP tower

Shi et al., in prep

Circulation types: COST733 15

Main PM1 pollution component analysis: NO3

Main PM1 pollution component analysis: OM

Pollution as a function of air mass origin

Pollutant	Season	Wind sector	Deposition	Code
[NO3]	Spring		Dry	SCD
	Winter	Continental		WCD
[OM]	Winter			

- Oceanic VS Continental Wind Sector
- For Continental: Local vs Transported pollution
 - Local/Transported by [BC]/[SO4] (Petit et al., 2015) because:
 - BC: primary
 - SO4: secondary
 - Local: BC/SO4 > 1,5

SRTA

- Mixed: 0.5<BC/SO4 < 1,5
- Transported: BC/SO4 < 0,5

16th SIRTA Annual Science Meeting, Palaiseau, France, 15 June 2018

NO3 Continental & Transported

NO3 Continental & Local

OM Continental & Transported

Multi-parameter effects

OM Continental & Local

Multi-parameter effects

Cumulative multi-parameter conditions

Pollutant	Period	Wind Sector	Aerosol origin	Temperatu re	No rain days	Ventilation
NO3	Nov-April	Continental	Trans- ported	T<5 if Nov- April T<15 if March-April	>=5	<2000
OM	Nov-April June- August	Continental	Trans- ported and local	T<5 if Nov- April T>18 if June- August	>=5	<2000

16th SIRTA Annual Science Meeting, Palaiseau, France, 15 June 2018

SIRTA

Cumulative multi-parameter conditions

16th SIRTA Annual Science Meeting, Palaiseau, France, 15 June 2018

Conclusions

- "CABAM" algorithm to characterise ABL based on Vaisala ceilometer data
 - a) MLH detection
 - b) ABL classification according to cloud cover and type
- Long-term statistics for central London and suburban Paris:
 - Paris tends to have lower MLH during night and higher daytime values
 - ABL class depending on cloud type is crucial for interpretation of overall statistics
 - Simple parameterisation developed for London reveals differences in diurnal cycle (evening decay phase)
 - Further analysis needed: e.g. land cover, synoptic background
- Beijing: lower MLH compared to London and Paris
- Clear dependence of MLH on synoptic background
- Profile along 320 m tower \rightarrow stratification in accordance with MLH²⁵