

Paramétrisations simples pour représenter les SVOC/IVOC du trafic routier et impact sur la qualité de l'air en Île-de-France

K. Sartelet, Y. Kim, C. Seigneur, S. Zhu, S. Moukhtar, M. André, J.M. André, V. Gros, O. Favez, A. Brasseur, M. Redaelli, A. Charron, J-L Besombes, J-L Jaffrezo, N. Marchand, L. Polo

Introduction: composition of particles during a pollution episode in Paris in December 2016

Observations at SIRTA (Greater Paris) (Source : SIRTA / IPSL – LSCE / INERIS)

- High concentrations of organic matter (OM)
- Simulations show that about 85% of pollution is local
- Organic precursors from traffic and residential heating

Organics in the emissions

VOC and I/S-VOC precursors of SOA

Amongst VOC, not all chemical species are SOA precursors.
The main known

precursors are aromatics: the so-called BTEX (benzene, toluene, ethylbenzene, and xylenes), and HAP.

I/S-VOC precursors of SOA are high molecular weight molecules, aromatics and cyclic alkanes ...

Estimation of I/S-VOC emissions for linear alkanes

Emission factors of gas- and particle-phase alkanes for an urban cycle with cold start (Source: Kim et al. Atmos. Env., 140, 176-187, 2016).

Kim et al. (2016) measured alkane emissions in gas/particle phases:

- Gas IS-VOC/OM ~ 0.8 for Euro 4 diesel vehicle
- Gas IS-VOC/OM ~ 23 for Euro 2 gasoline vehicle
- Gas IS-VOC/OM ~ 116 for Euro 4 DPF diesel vehicle

 \Rightarrow For passenger cars in France,

Gas IS-VOC emissions ~ 1.5 OM emissions.

These gas SVOC emissions are missing from emission inventories.

Estimation of I/S-VOC emissions using VOC emissions

- I/S-VOC estimated using I/S-VOC/OM
- But OM measurements depend on temperature => use I/S-SVOC/VOC instead
- Zhao et al (2015, 2016) =>
 - SVOCI/VOC^{*} = 0.04 ± 0.02 for cold-start gasoline vehicles,
 - SVOCI/VOC^{*} = 0.17 ± 0.12 for hot-start gasoline vehicles,
 - SVOCI/VOC^{*} = 0.6 ± 0.1 for diesel vehicles,
 - SVOCI/VOC^{*} = 1.5 ± 0.8 for diesel vehicles with particle filters.

* VOC are measured as NMHC, which may include a fraction of SVOC

Simple model to represent I/S-VOC emissions and ageing

• Only 3 species, the volatility distribution based on measurements of May et al. (2013)

log(c*)	Fraction of POA _{total}	Model species	Model log(c*)	Model fraction of POA _{total}	
< -1	0.034	POA-ly	- 0.04	0.041	
-1	0.007				
0	0.008				
1	0.025	POA-sv	1.93	0.058	
2	0.025				
3	0.079				
4	0.203	POA-iv	3.5	0.612	
5	0.330				
6	0.289				
0	0.209				

• Simple one-step ageing scheme

 POA_{vapor} -lv + $OH \rightarrow SOA_{vapor}$ -lv

 POA_{vapor} -sv + $OH \rightarrow SOA_{vapor}$ -sv

 POA_{vapor} -iv + $OH \rightarrow SOA_{vapor}$ -iv

Ageing of I/S-VOC emissions

- Comparisons to the measurements of Gordon et al. (2014) and more sophisticated model of Zhao et al. (2015)
- For idle driving diesel vehicles: EF VOC = 6 200 mg/kg fuel

Organic concentrations from ageing of idle driving diesel vehicle without DPF emissions. Source: Sartelet et al. Atmos. Env., 2018

- After 11h of ageing (same OH exposure time as Gordon et al. 2014), SOA/POA=
 8.6 in the experiment and 6.6 in the simple model
- After 48h of ageing,
 - Zhao et al. $(2015) \Rightarrow OA = 1500 \text{ mg/kg}$ fuel of SOA
 - Our model \Rightarrow OA = 1574 mg/kg fuel
- Most of SOA from I/S-VOC oxidation for diesel vehicles

Ageing of I/S-VOC emissions

Organic concentrations from ageing of gasoline vehicle emissions (simulation of the experiments of Gordon et al. 2014). Source: Sartelet et al. Atmos. Env., 2018

- Comparisons to the measurements of Platt et al. (2013) for Euro 5 gasoline vehicle
- THC = POA_{total} + VOC initialised as in Platt et al. (2013)
- IVOC initialised by IVOC/VOC = 0.17 (Zhao et al. 2016)
- NOx initialised such as having VOC/NOx = 5.6 as in Platt et al. (2013)
- After 5 h of ageing, 197 µg m⁻³ of OA are simulated in good agreement with the measurements of Platt et al. (2013), who estimated OA to be about 200 µg m⁻³ after wall loss corrections.

Application to Greater Paris

- Polyphemus air-quality platform
- ECMWF Meteorology over Europe and France
- WRF Meteorology over Île-de-France
- EMEP emissions over Europe
- CITEPA emissions over France
- Airparif emissions over Île-de-France

Mozart 4 boundary conditions for European domain

I/S-VOC emissions

- Similar total emissions over Île-de-France by using the I/S-VOC/POA or the I/S-VOC/VOC methods
- Larger emissions over urban areas and lower over motorways using the I/S-VOC/VOC method

Fig. 3. POA_{total} emissions due to traffic in tonnes per year estimated from emissions of POA (reference simulation, left panel), and relative difference between the POA_{total} emissions estimated from the emissions of VOC (sensitivity study) and the emissions of POA (reference) (right panel).

Impact on OA concentrations

• Impact on OA concentrations is lower than on emissions

Fig. 8. Total organic concentrations (gas + particle phase OA_{total}) in $\mu g m^{-3}$ simulated with emissions estimated from the POA_{total}/POA emission ratio (left panel) and relative differences (in %) between concentrations simulated with emissions estimated from the POA_{total}/VOC emission ratios and those simulated with emissions estimated from the POA_{total}/POA emission ratio (right panel).

Contributions to OA concentrations

• Low contribution of VOC (toluene, xylenes)

Fig. 6. Contribution in % of POAtotal emissions (left panel) and VOC emissions (right panel) to OA concentrations.

Comparisons to measurements

Table 2

Statistics of comparisons to measurements for PM_{10} , $PM_{2.5}$, BC and OA. The statistics are derived from daily concentrations for a year.

	Number of stations	Meas. mean	Sim. mean	Correlation	mfe	mfb
		$(\mu g m^{-3})$	$(\mu g m^{-3})$	(%)	(%)	(%)
PM10	14	21.1	17.3	32	43.6	-23.8
PM _{2.5}	7	12.4	14.2	36	45.4	21.6
BC	3	1.2	0.6	75	64.6	-60.9
OA	1	3.2	2.2	41	50.9	-29.8

Source: Sartelet et al. Atmos. Env. 2018

SIRTA site not much affected by traffic I/S-VOCs
 > Need measurements in Central Paris

Conclusion

- OM precursors are emitted in the gas phase, with different volatilities and characteristics.
- A simple model of I/S-VOC emission and ageing represents well some chamber experiments.
- Need to better characterize the OM precursors. Low contribution of single-ring aromatic VOCs.
- Need to differentiate the potential of SOA formation depending on the Euro norm, regime (motorway, road, urban).
- More observations in central Paris required.